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To understand the physics of air entrainment in thin-film liquid coating and other 
applications, the stability characteristics of general stratified two-layer Poiseuille- 
Couette flow are examined in inclined channels. Only one mode of instability, the 
interfacial mode, is obtained in the long-wave asymptotic limit. The generalized 
eigenvalue problem, formed by spectral decomposition and solution of the general 
two-layer Orr-Sommerfeld equation, is solved to obtain all of the critical modes. 
Analysis of the air/liquid interface corresponding to experiments reveals that because 
of the large density variation between the two layers, the interfacial mode is the 
only mode of instability in air entrainment. Results from the stability analysis of the 
flow near the contact line where air entrainment occurs are consistent with previous 
experimental observations. 

1 Introduction 
Stability of stratified fluid layers in inclined channels is important in many physical 

problems. Examples vary from flooding problems in channels to multilayer extrusion 
and coating flows. In this paper, however, we focus on the two-layer flow instability 
in inclined channels with applications to air entrainment in coating where the two 
fluids are air and the coating liquid. 

A liquid coating process, where a thin liquid film is applied on a substrate, involves 
displacement of air by liquid. With flexible substrates, such as paper, photographic 
films, or magnetic tapes, the coating is continuously applied onto a moving surface. 
The wetting line where the liquid comes into contact with the dry substrate is referred 
to as the dynamic contact line. The speed of the substrate and, therefore, the rate of 
coating is limited by the maximum critical speed of displacing the air at the contact 
line. It was first noted by Deryagin & Levi (1959) that beyond a critical speed, 
the contact line which is originally straight breaks into a sawtooth pattern where a 
thin air layer penetrates between the liquid and the solid surface. This leads to the 
formation of air bubbles which penetrate into the liquid phase. 

We recognize at least two regimes of air entrainment: (i) a microscopic regime, 
proposed by Miyamoto & Scriven (1982) and further investigated by Miyamoto 
(1991) and (ii) a second regime at macroscopic scale where air bubbles of the order 
of few hundred microns form at the wetting line and penetrate into the liquid. 

-t Author to whom correspondence should be sent. 
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FIGURE 1. Schematic of the boundary displacement during wetting (from Deryagin & Levi 1959). 

Our study focuses on the macroscopic regime of air entrainment where the entrained 
bubbles are too large to dissolve in the liquid and, therefore, remain in the system. We 
are primarily interested in the mechanism of the dynamic contact line instability and 
air entrainment with non-porous smooth surfaces although the general conclusions 
may apply to paper and photographic films, as well. 

The pioneering work of Deryagin & Levi (1959) revealed an important event 
and limitation in the wetting of solids by liquid. A contact line, originally straight, 
breaks into a sawtooth pattern (figure 1) at a critical speed where the contact angle 
approaches 180". This flow behaviour at the wetting line seems to be universal in the 
sense that it occurs regardless of the substrate material and liquid properties. In the 
ideal situation where the contact line is infinitely long, this behaviour can be viewed 
as a transition from a two-dimensional flow to a three-dimensional state. 

Blake & Ruschak (1979) attributed this behaviour to a maximum wetting speed 
above which the contact line has to incline with the flow direction in order to expe- 
rience a wetting speed below the maximum value. A rigorous analysis of the contact 
line instability and formation of triangular air pockets remains to be undertaken. 

In a recent study, we (Aidun, Veverka & Scriven 1991) have investigated the 
sequence of events which lead to the formation of air bubbles and their entrainment 
into the liquid. Clearly, a prerequisite for air entrainment in the wetting process is 
the formation of these triangular structures. The events that follow this transition 
and lead to entrainment of air bubbles are revealed by Veverka & Aidun (1991) and 
Aidun, Veverka & Scriven (1992). In these studies, the experimental setup (figure2) 
consists of a roll immersed halfway into a pool of liquid. The roll rotates with a 
constant speed forming a contact line as the surface enters the liquid. The fluid that 
adheres to the roll at the region emerging from the liquid is scraped off. 

The triangular air pockets are clearly visible at the contact line, as shown in the 
first frame of figure 3. Considering this image to be at time zero, the next 11 frames 
demonstrate the sequence of events leading to an air bubble entraining into the liquid 
phase. The markers on the horizontal lines on the roll are 1 cm apart. The reflection of 
the markers is also apparent in frames 43 to 58. The thinner cross-hairs on the camera 
lens divide the images into six parts. The three vertical lines are 16.3 mm apart. In 
these images, the solid surface is moving upward at a linear speed of 0.26ms-I. 

The solid surface inside the air pockets represented by the darker triangles is dry 
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FIGURE 2. Schematic of the experimental setup. 

and, therefore, the wetting line has a sawtooth structure. We explain the events 
leading to air entrainment by focusing on the second triangle from the left-hand side 
of frames 43 to 58 of figure3. In general, the liquid ruptures the air film at the sides 
of the triangle creating a nucleation of wetting site which expands rapidly isolating 
an air patch at the tip as shown in frames 43 to 54. This volume of air detaches 
from the surface (frame 55)  and forms an air bubble which penetrates into the liquid 
phase as demonstrated in frames 56 and 58. The total elapsed time from nucleation 
of wetting to formation of an air bubble is about 0.05 s. By measuring the volume of 
the bubble and the surface area of the triangle, we estimate the thickness of the air 
film to be between 10 to 50pm. This is in good agreement with the value proposed 
by Scriven (1982). 

Although the formation of air bubbles has been revealed by these images, the 
physical mechanism initiating air film rupture and the nucleation of wetting remains 
hidden with this particular flow visualization technique. In principle, there are two 
completely different mechanisms which can initiate a liquid bridge. A hydrodynamic 
mechanism involving wave formation on the liquid surface inside the air pocket 
is proposed by Scriven (1982). The wave amplitude could grow large enough to 
eventually touch the solid surface. The second mechanism could be due to particles 
in the fluid or air which penetrate into the air pocket and provide a bridge between 
the solid and the liquid. Obviously, in the presence of particles in the air, the second 
mechanism can initiate nucleation of wetting. The question, however, is whether the 
hydrodynamic mechanism is sufficient for initiating a wetting site. In other words, is 
the liquid surface inside the air pocket unstable and if so, what is the mechanism of 
this instability? 

Experiments where the air pockets are viewed in a different angle show that waves 
form at the liquid surface. In this setup, we focus on the liquid interface inside the 
air pockets. The first picture in figure4 shows a wavy surface at the two sides of the 
triangle. The subsequent pictures show wetting sites initiating at the sides followed by 
the same sequence of events leading to formation and entrainment of air bubbles, as 
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FIGURE 4. Sequence of events reproduced from the 16mm film of the wavy interface inside the 
triangular air pockets at: (a )  t = 0 ms, ( b )  t = 25 ms, ( c )  59 ms, ( d )  93ms, and (e) 506 ms. 

presented above. The waves appear to travel toward the base of the triangle opposite 
to the direction of the solid surface motion. This is due to the air movement inside the 
air pocket. Air moves inward at the mid-part of the triangle, as shown in figure5(a), 
and leaves the air pocket from the sides. These waves have a wavelength in the order 
of few mm, while their amplitude is orders of magnitude smaller. 

The motivation for this study is to examine the stability characteristics of the 
air/liquid system inside the air pockets and to examine the mechanism(s) for potential 
instabilities. 

The flow visualization results suggest that air flows into the air pocket with the 
solid surface at the mid-part of the triangle base, changes direction, and moves 
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FIGURE 5. Schematics of (a) the triangular air layer, and the idealized air stream velocity profile in 
(b) cross-section A-A and (c) cross-section B-B. 

outward along the sides. This clearly results in a complex three-dimensional flow 
pattern. For a rigorous stability analysis, one must solve the three-dimensional base 
state and examine its stability to spatial as well as temporal disturbances. A full 
stability analysis, however, is beyond the scope of this study and shall be addressed 
in the future. In this study, we note that the thickness of the air layer is orders 
of magnitude smaller than the other two dimensions. Taking advantage of this fact 
and assuming that lubrication approximations apply, we unfold the problem into its 
two-dimensional idealization, presented in figure 5,  where schematics of the velocity 
profiles at sections A-A and B-B of figure5(a) are plotted in figures5(b) and 5(c), 
respectively. We have reduced the problem to the stability analysis of a stratified 
parallel flow in an inclined channel. Although multilayer stratified flows have been 
studied extensively in the past, the stability analysis of stratified Couette-Poiseuille 
flow in inclined channels applying to our problem has not been reported before. 

The idealized system can be considered as the stratified Poiseuille-Couette flow of 
two immiscible liquids with different density and viscosity bounded by two parallel 
walls. One of the walls, representing the substrate, is moving while the other is 
stationary. Gravity is acting on the system at an angle varying from 0" to 90" relative 
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to the wall. Linear stability analysis of similar flow systems (two-layer parallel flows) 
has received much attention in recent years. In the following paragraphs, we briefly 
review the main points of these studies and list the unstable modes that have been 
observed in two-layer parallel flows. We then outline the unique features of the air 
entrainment problem which are not covered by previous studies. 

It is well-known that one-layer parallel Poiseuille flow exhibits finite-amplitude 
subcritical instability (Reynolds & Potter 1967) and that the effect of the Couette 
component on the stability of such a system is stabilizing. The combined Poiseuille- 
Couette flow becomes stable to infinitesimal disturbances after superposing enough 
Couette component at a given Reynolds number. Whether the Couette component 
has the same stabilizing effect on the two-layer flow has remained unexplored. 

Using a Iong-wave asymptotic method, Yih (1967) showed that in the presence of 
a viscosity difference between two fluids, plane Poiseuille and plane Couette flow can 
be unstable even at extremely small Reynolds numbers (Re). This unstable mode is in 
the neighbourhood of a hidden neutral mode for the single-layer case and is brought 
out by the viscosity stratification. A characteristic of the interfacial mode is that the 
magnitudes of the critical parameters grow as k 2 ,  where k is the wavenumber. In his 
study, the two fluids have the same density but different viscosities, gravity is acting in 
the direction normal to the flow direction, and only stability in the long-wave region 
was investigated. 

Linear stability analysis of the two-layer concurrent Couette flow of different 
viscosities in an infinite region indicates that in the absence of surface tension the 
flow is always unstable (Hooper & Boyd 1983). Hooper & Boyd (1987) showed 
that the relevant dimensionless groups in a two-layer Couette flow with the lower 
fluid bounded by the wall are a dimensionless wavenumber measured on a viscous 
lengthscale, p, and (&)‘I3, where CI is a dimensionless wavenumber measured on the 
scale of the depth of the lower fluid, and R is the Reynolds number of the lower fluid. 
Three different kinds of unstable modes were found in different parameter regions. 
They concluded that there is a short-wave instability when p is large and at small p 
and (&)‘I3, a long-wave mode similar to Yih’s appears. At small p, but large ( u R ) ” ~ ,  
the dynamics are dominated by a new type of large Reynolds number instability 
which is due to the effect of the viscous boundary layer at the wall on the inviscid 
flow that could exist on either side of the interface. 

After redefining a as a measure of the fluid shear rate, Hooper (1989) applied the 
above theory to the Couette-Poiseuille flows of two fluids of different viscosities but 
equal density confined in a two-dimensional channel. She noted that when p >> 1 or 
/3 << 1 and (aR)’13 << 1 the stability of the flow is dominated by viscous effects at 
the interface, and the instability is caused primarily by a transfer of energy from the 
basic flow to the disturbance by the disturbance tangential stress at the interface. On 
the other hand, when p << 1 and (aR)‘13 >> 1, the instability of the flow is dominated 
by viscous effects at the boundary walls caused mainly by a transfer of energy from 
the basic flow to the disturbance via the Reynolds stress. 

The thin-layer effect is referred to the following phenomenon in the two-layer 
Couette flow with gravity normal to the flow direction. If the two layers have the 
same density, the unstable long-wave mode can be stabilized if the less-viscous fluid is 
the thinner layer. Even in the case of two layers with an adverse density stratification, 
the critical long-wave mode can be stabilized by placing the less-viscous fluid in the 
thinner layer (Renardy 1987). The interfacial mode is always stable in the short-wave 
region due to the surface tension effects. 

The combined effects of density, viscosity stratification and thickness ratio as well as 
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the effects of interfacial tension and gravity on the parallel plane Poiseuille flow have 
been investigated by Yiantsios & Higgins (1988). They showed that the interfacial 
mode is unstable for a large range of the physical parameters, while the shear mode is 
unstable in a much smaller region. Also the maximum growth rate for the interfacial 
mode is about two orders of magnitude larger than that for the shear mode, even 
when the Reynolds number for the interfacial mode is smaller. Although the case 
studied by Yiantsios & Higgins (1988) has similar features to our problem, there are 
two major differences. First, in their study, gravity acts normal to the flow direction, 
and therefore has no effect on the base flow. Gravity enters the calculations only in 
the disturbed normal stress boundary condition. However, with the presence of the 
inclined walls in our problem, gravity not only plays an important role in the base 
flow, but also appears in both disturbed normal stress and tangential stress boundary 
conditions. Secondly, they only consider pure Poiseuille flow whereas in our problem 
the Couette component has a significant effect on the results, an effect that needs to 
be studied. 

Air entrainment can also occur when a jet of liquid plunges into a stagnant pool 
of the same liquid. This problem was studied by Lezzi & Prosperetti (1991) who 
represented the problem as a parallel liquid/air/liquid flow problem. In their study, 
they assumed that the liquid layer has no velocity gradient and, therefore, simplified 
the problem by imposing a constant velocity at each air/liquid interface. In addition to 
the interfacial instability due to the viscosity stratification, critical Kelvin-Helmholtz 
modes appear in the system. In the current problem, where one side of the air layer is 
bounded by a solid surface, we show that the Kelvin-Holmholtz modes of instability 
are totally excluded. 

One-layer thin liquid systems down an inclined wall can be classified into two 
groups. In the first group, a fixed stress is imposed on the top surface, while the second 
group is characterized by an imposed velocity (Smith 1990). The physical mechanism 
for the long-wave instability can be decomposed into an initiating mechanism that 
drives the dominant motion in the film and a growth mechanism that produces the 
unstable mode at the interface. The initiating mechanism can be either velocity- 
induced or stress-induced. Smith (1990) predicted that in flows composed of more 
than one liquid layer, both mechanisms can be important. When each layer has a 
different density, a jump in the curvature of the base velocity profile at the interface 
would occur, and the stress-initiation mechanism would dominate. Likewise, when 
viscosity stratification is presented, a jump in the base velocity gradient across the 
interface would appear, and the velocity-initiation mechanism would operate. 

Using a zero Reynolds number approximation, Loewenherz & Lawrence (1989) 
showed that for two-layer parallel flows down an inclined wall with a free surface 
both long-wave and finite-wave modes are unstable. In their paper, surface tension 
was neglected, and the density was the same for both layers. 

Recently, Tilley, Davis & Bankoff (1994) studied the stability of two-layer Poiseuille 
flow in an inclined channel. They found that the primary instability in the cases they 
considered is due to long-wave interfacial disturbances. They have also reported that 
the odd Orr-Sommerfeld shear mode could become unstable and even dominant in 
some parameter region. The focus of their study was the flooding problem in inclined 
channels and their analysis in arbitrary wave regions concentrated on air-water and 
olive oil-water systems. On the other hand, we are interested in understanding the 
mechanism(s) causing air entrainment in coating systems where one of the surface 
is moving and the coating viscosity is orders of magnitude larger than water. We 
consider the base flow patterns that are visualized in our previous air entrainment 
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FIGURE 6. Flow configuration. 

experiments in order to understand the physical mechanism(s) of the instability in the 
experiments. We have not encounter the odd Orr-Sommerfeld shear mode revealed 
by Tilley et al. (1994) in the air entrainment problem considered here. 

Although a lot of research has been done on two-layer parallel flows, none has 
considered the stability characteristics of general two-layer flow with surface tension 
in an inclined Couette-Poiseuille system with density and viscosity stratification. 
To better understand the physics of air entrainment in coating and other surface 
processing applications, it is necessary to make a generalized model which can be 
used to explain the experimental observations and, in particular, to determine whether 
the waves observed at the air/Iiquid interface are due to hydrodynamic effects alone 
or influenced by other physical effects. 

2. Governing equations 
The goal of this section is the development of generalized linear stability equations 

for two-layer parallel flow systems (figure 6). The problem is defined as two immiscible 
liquids confined between two solid walls. The left wall is moving at a velocity of 
Y W ~ I ,  and the right at a velocity of qWt1, where q and r serve as parameters. Indices 
1 and 2 are used to denote layers 1 and 2, respectively. The coordinate system is 
introduced with the z-axis parallel to the walls and x in the direction normal to the 
walls. Gravity is acting on the system with an angle 8 to the z-direction, as shown in 
figure 6. 

The equations are non-dimensionalized with respect to the thickness of layer 1, 
d l ,  for length, W ~ I  for velocity, p l W l l / d l  for pressure, and p l d f / p l  for time. This 
introduces the dimensionless parameters 

Pl  viscosity ratio m = - 

P1 density ratio e = - 

P2’ 

P2’ 

d2 thickness ratio n = -, 
dl 

Reynolds number Pldl Wll R e =  -, 
P1 
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where dpldz is the pressure gradient in the z-direction, and g is the gravitational 
acceleration. The Reynolds number, Re, is defined in terms of the parameters of layer 
1 and WII, as shown in (4). The flow may be generated by pressure gradient, gravity, 
or the movement of the walls, or their combination. Therefore, in some cases not 
only the Reynolds number but also the Froude number, F ,  defined by ( 5 )  are the 
important parameters. 

In this analysis, we assume the base flow is fully developed steady laminar flow. 
The base velocities can be expressed as 

W, = A ~ X ~  + alx + bl,  

W2 = mA2x2 + a2x + b2, 
(8) 
(9) 

subject to the following boundary conditions : 

W1(-1) = r ,  W2(n) = 4, 

The coefficients in the base velocity profile are 

A l  -A2mn2-r+q 
1 + m n  al  = 7 a2 = m al, 

9 bZ = bl. (13) 
-(A1 + A2n)mn + mnr + q 

1 t m n  
bl = 

The system is perturbed by imposed infinitesimal velocity (ui = (ui, mi)) and pressure 
( p i )  disturbances on layer i, in addition to a position disturbance ( q )  on the interface. 
Neglecting the quadratic and higher-order terms, we obtain the linearized disturbance 
equations. Among these, the continuity equation allows the use of the stream function 
y I  for each layer such that 

In the linear stability analysis, we assume that the solution to the disturbed system 
is periodic in the z-direction with wavenumber k .  Thus, all the disturbances can be 
expressed in normal modes as 

where s, the growth rate, with positive (negative) real part represents instability 
(stability). The resulting equation is the well-known Orr-Sommerfeld equation, given 
by 

(16) @: - 2k2@: + k4Gi = - [(s + ikReWi>($: - k2Gi) - ikReW;Gi] , ti 
Si 
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subject to the no-slip conditions at the walls 

$1(-1) = 0, ${(-I) = 0, 
$2(n) = 0, $;(n) = 0. 

The continuity of each component of velocity at the interface is given by 

while the continuity of tangential and normal stresses yields 

m [Oy(O) + k2@1(0)] = @;(o) + k2@2(0) + [ w ~ ( o )  - ~ W ; ( O ) ]  9, (22) 

1 
[@;(O)s* - ikRe@l(0)Wi(O)] - 

1 
m 

[@b(O)s' - ikRe&(O)W;(O)] 

- [$"(O) - 3/c2&(0)] + - [$T(O) - 3k2$;(o)] = i [kF sin(@ - (Ca)-'k3] 4, (23) 

where the capillary number, Ca, and s* are defined by 

Pl Wll Ca = -. 
0 

and 
S* = s + ikRe WI(O), 

where 0 is the surface tension. 
The kinematic condition is presented by 

s'$ = -ikRe@l(0). 

Equations (16)-(26) form an eigenvalue problem with the eigenvalue s and the 
eigenfunction given by Oi and q for a given set of parameters k,Re,m,e,n,Ca, and 
F .  We first solve this problem in the asymptotic limit, k << 1, representing the 
long-wave instability of the two-layer parallel flow. A full solution of the problem is 
also presented below. 

3. Long-wave asymptotic analysis 

be obtained from its asymptotic behaviour in the long-wave limit, where k << 1. 
Before solving for the flow instability numerically, some important information can 

3.1. Viscous/inviscid analysis 

The experimental results have shown that the air layer is much thinner than the 
liquid. Thus, as the first step, we assume that the liquid extends to infinity with a 
constant velocity. In this way, the difference between the interface velocity and the 
free-stream liquid will be proportional to the viscosity ratio, m. Since in reality the 
ratio is much smaller than one, the shear stress at the air/liquid interface is neglected 



Stability of two-layer stratiJied flow in inclined channels 187 

here. Therefore, the velocity of the liquid layer is considered as uniform to simplify 
the calculation. 

Considering air in layer 1 and liquid in layer 2, we approximate the velocity 
gradient in the liquid layer to be zero, m = 0. With this approximation together with 
the difference between the two velocity coefficients being unity, i.e. r - q = 1,  the 
coefficients for the base-state solution (12) and (13) reduce to 

We define the reduced velocity W: by subtracting the liquid velocity from the base 
flow, that is 

w; = wi - w2. (29) 
The linearized equations in the liquid phase are given by 

v . u 2  = 0 

- -eVp2, 
au2 
at 
- _  

while the equations for the air layer are 

V.Ul = 0, 

The boundary conditions are simplified as no slip at the left wall 

q ( - l , z , t )  = 01(-1,2,t) = 0, (35) 

while the continuity equations of normal and tangential velocities at the interface are 
given respectively by 

and 

and the continuity of normal stress at the interface is given by 

Ul(O,Z, t )  = U 2 ( O , Z ,  t )  

w ( 0 ,  z, t )  = 02(0,z ,  t )  - w;(o)4(2, t ) ,  

(36) 

(37) 

The kinematic condition reduces to 

(39) - _  - Re ul(O,z,t). 
at 

By the usual procedure of using the normal modes, 

the solution to the liquid phase (30) and (31) can be written as 

~ ~ ( x )  = 
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G ~ ( X )  = -iC2e-kx, 

where C2 is the integration constant. 

that used by Lezzi & Prosperetti (1991), 
Other unknowns are expanded in terms of the wavenumber k in a similar form to 

(45) 

Substituting the above expansions into (32)-(34) and then balancing the zeroth- 
order terms in k ,  we get the zeroth-order disturbance equations 

The corresponding zeroth-order boundary conditions from (35)-(39) are given by 

u10(-1) = 0, (49) 
Wo(-l) = 0, (50) 
h o ( 0 )  = &2(0), (51) 
OlO(0) = -W;(o)ro, (52) 
PlO(0) = (so/e) UlO(0)  + 2 [ 4 0 ( 0 )  - i ~ ; ( o ) % ]  Y (53) 

( 54) 

The zeroth-order solution to the (46)-(48) with boundary conditions (49)-(52) is in 

Re UlO(0) = soqo- 

the form 

where C1 is the integration constant. Substituting the above solution into (53) and 
(54), the zeroth-order growth rate can be expressed as 

so = i i  Re Wi(0) (58) 

and 

(59) 

Since SO is purely imaginary, it does not give any information about the stability. 
Therefore, the first-order correction is needed. The first-order disturbance equations 
are 
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FIGURE 7. Stability criteria for the inviscidfviscous flow. 

subject to the corresponding first-order boundary conditions 

U11(-1) = 0, (63) 
0 H - l )  = 0, (64) 

U1 l(0) = 0, (65) 
O1l(o) = -i Ulo(o) - Wi(0)V1, (66) 

(67) 

(68) 

SO S1 

e Pll(0) = - Ull(0) + ; UlO(0) + 2 [U;l(O) - i W;(O)Vl] + (CWVo, 

Re U I l ( 0 )  = SOVl + SlVO. 

The resulting first-order eigenvalue is 

s1 = [-+i + &(I + A ~ ) R ~ ]  ReWI(O). 

s = +i [ 2 ( ~ ~  - 1)k + (1 - ~ ~ ) ~ e k ’ ]  + &(A: - 1)Re2k2. 

(69) 

After some simplification, the temporal growth rate to the first-order can be expressed 
as 

(70) 

This unstable mode is similar to Lezzi & Prosperetti’s (1991) do) mode. It belongs 
to the long-wave region and its magnitude is proportional to k2.  We plot the real 
part of the growth rate as a function of Al  in figure 7. It is clear from the plot that if 
W;(O) > 0 or W;(O) < -2, i.e. ]All > 1, then the interface will become unstable. 

For the side region of the air pocket, air is forced to flow outwards, opposite to 
the direction of the liquid flow. In this case, the velocity gradient at the interface 
(figure5c) is positive, that is W;(O) > 0, thus the flow is unstable, consistent with 
the experimental observations. In the middle region of the air pockets, air flows in 
the same direction as the liquid, thus Wi(0) is negative. If W;(O) is greater that -2, 
this analysis predicts a stable flow as observed in the experiments. However, when 
Wi(0) < -2, then this asymptotic analysis predicts an unstable flow in contrast with 
the experimental observations. This inconsistency is due to the exclusion of shear in 
the liquid layer. We therefore must include the liquid layer in the analysis. 
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3.2. Two viscous layers 
In this section, we extend the long-wave asymptotic analysis to consider the shear in 
the liquid layer. In the long-wave limit, the stream functions (ti)i), growth rate (s), and 
interfacial deviation (4) can be expanded in terms of the wavenumber, k (Yih 1967) 

The zeroth-order approximation of the Orr-Sommerfeld equations is given by 

lp;; = 0. (75) 

The boundary conditions given by 

mw;’l(O) = w;(m, (81) 

are obtained by substituting (71)-(74) into (18)-(26) and collecting terms which do 
not contain k. 

The zeroth-order solution to the above system is given by 

tpjo = 1 + Bi x + Cj x2 + Di x 3  , (82) 

where 

9 (83) 
i(A1 - A2)mn2Re + (1 + 3mn2 + 4rnn3)so 

2mn2( 1 + n)so 
B1 = 

i(Al - A2)mn3Re - (4 +- 3n + mn3)so 
2n( 1 + n)so 

i(Al - A2)rnn2Re + (1 + mn3)sg 
mn2( 1 + n)so 

B2 = 

Cl = 

Cz = - 

D1 = 

5 

, 

i(A1 - A2)rnn3Re + (1 + mn3)so 
n2( 1 + n)so 

i(Al - A2)mn2Re + (1 - mn2)so 
2mn2( 1 + n)so 

i(A1 - AZ)mn2Re -i- (1 - rnn2)so 
2n2( 1 + n)sO 

, 

2 

D2 = , 

(87) 

(89) 

Again the zeroth-order growth rate, SO, is purely imaginary, thus it does not 

A1 - AZ + (A1 + A2)rnn2 - 2(al - a2)( 1 + n) 
1 + 4mn + 6mn2 + 4mn3 + m2n4 

SO = -imn 
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provide any information regarding the stability. So the same procedure as before is 
followed to obtain the first-order correction. The first-order approximation to the 
Orr-Sommerfeld equation is given by 

1 

Si 
I& = - [ ( S O  + iReWi)yG - iReW:’yio], 

subject to the following boundary conditions : 

v11(--l) = 0, VL-1) = 0, 
v21 (n)  = 0, v;1 (n) = 0, 
v11(0) = v21(0), 

The solution to the first-order approximation can be written as 

vi1 = ABj x + ACi x2 + ADj x3 + hi(x)i, 

where the hi are determined by integrating (90) four times : 

hl(x) = &iAIDIRe x 7 +  &ialDIRe x6 

+&(-vllBIRe + ialClRe + 3Dlso)x5 + &(--iAlRe + C1so)x4, 

im2 im 
60e 

h2(x) = mA2D2Re x7 + --azDzRe x6 

m .  m 
60e 12e 

+--(ia2C2Re - iAzB2mRe + 3&s0)x5 + -(-iAzmRe + C2s0)x4. (99) 

The six coefficients and the eigenvalue s1 can be obtained by solving the boundary 
conditions. The first-order correction of the growth rate is in the form 

s1 = -~i[s~(-3mn2(1 + 2n + mn2)h’,(1) - 3mn2(3 + 4n + mn2)hl(l) 

+3n( 1 + 2mn + mn2)hi(n) - 3( 1 + 4mn + 3mn2)h2(n) + ialmn3( 1 - l/e)( 1 + mn)Re 

-Blmn3(l - l/e)(l + mn)so) - Fmn3( 1 + mn)Reso sin(6)]/mn2Re(2(al - a2)(l + n) 
- ( A ~  - A ~ ) ( I  - mn2)). (100) 

This long-wave asymptotic result (100) is the most general solution for the two-layer 
parallel flow. Unlike previous cases studied (Yih 1967; Yiantsios & Higgins 1988; 
Hooper 1989; etc.), here A l  does not equal A2 because we have taken the density 
difference and inclination angle into consideration. Also we have an extra term 
[W;l(O) - mW,”]q in the tangential continuity condition (22). These two unique terms 
in our calculation make the result more general and applicable to our air entrainment 
experiments (Aidun et al. 1992). The expression for the growth rate presented by 
(100) reduces to Yih’s (1967) expressions for the two-layer Poiseuille flow by allowing 
the inclination angle 0 to be 90” while limiting the two layers to equal density and 
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FIGURE 8. Stability of (a) the side region of the triangular air layer (B-B) and ( b )  the middle region 

of the triangular air layer (A-A) for various viscosity ratios. 

thickness with stationary walls. Equation (100) can also be reduced to Yih's (1967) 
expressions for Couette flow (i.e. r = l , A l  = A2 = 0). 

We now apply the result to our air entrainment experiments where the density ratio 
of air to liquid is taken as e = 0.001207. The inclination is considered to be vertical, 
that is 8 = 0" and the thickness ratio n = 10. 

As stated before, we break down and approximate the flow near the sides of the 
air pocket with a parallel counter-current Couette-Poiseuille system where the net 
flow of air is in the opposite direction to the liquid flow. Figure 8(a) shows the 
variation in growth rate with the viscosity ratio. The experiments cover the range 
2.57 x lop5 < m < 1.20 x For all m, the interface for this flow is unstable as 
observed in the experiments. 

The interfacial stability of the middle section of the air pocket is studied by 
allowing air and liquid to move in the same direction. For the viscosity ratio rn in the 
experimental region, the middle section is stable as shown in figure 8(b) which is also 
consistent with the experiments. Though asymptotic analysis gives us results in the 
long wave-limit consistent with the experimental observations, we still want to find 
out whether the results in other wave region would also agree with experiments. In 
the following section, we show the numerical results of the stability analysis in the 
whole wave range. 
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4. Stability analysis: method 
As explained in the previous section, the long-wave approximation is not sufficient 

to explain the stability characteristics of the air/liquid interface in our air entrainment 
experiments. The interface could be unstable to an interfacial mode with a finite 
wavenumber or unstable to a completely different mode. From previous studies 
of two-layer Poiseuille flows (Yiantsios & Higgins 1988), we know that the shear 
mode is a candidate. But, are there other modes that may become unstable in this 
system that have not been captured in previous studies? By computational analysis 
and parametric continuation of the solution to the Orr-Sommerfeld equation for the 
two-layer Poiseuille-Couette flow in inclined channels, we obtain all of the possible 
modes that could become unstable in this system. 

The numerical scheme chosen for this system is the Chebyshev-Tau method (Got- 
tlieb & Orszag 1977). The Tau method is preferred because it automatically satisfies 
all boundary conditions. Since the Chebyshev polynomials span the range between 
-1 and 1, we transfer the coordinate x to xf for each layer where xt is given by 

2 ( X + i ) ,  - 1 < x < o  

(2 /n )  (x - i n ) ,  o < x < n .  
..={ 

The stream function for each layer, yi(x), is expanded in a truncated Chebyshev 
polynomial series 

N 
yi(x) C ai,j~j(x,)7 (102) 

j = O  

where the subscript i equals 1 or 2 depending on the layer and Tj(x) are Chebyshev 
polynomials (Gottlieb & Orszag 1977) defined as 

Tj(C0S p )  = COS(jP). (103) 

The truncation numbers (Ni) are selected to be large enough for sufficient accuracy. 
The total number of unknowns is (N1 + Nz + 3). A total of (N1 - 3) equations for 
layer 1 and (N2 - 3 )  for layer 2 are constructed by taking advantage of the orthogonal 
property of the Chebyshev polynomials. Together with the nine boundary conditions, 
a generalized eigenvalue problem can be defined : 

( Lt: hhii :it) ( z:) = s ( ::[ b32 ;it) b33 ( z:) . 
(104) 

h31 h32 h33 

The transformation of the base states (8) and (9), Orr-Sommerfeld (16), and the 
boundary conditions will not be discussed in this paper, and can be found elsewhere 
(Severtson 1996). The coefficients in these linear equations depend on the parameters 
in the problem including the wavenumber k .  It should be noted that by transforming 
the original equations into the above algebraic equations all possible growth rates 
now appear as the eigenvalues in this system, and an eigenvalue with a positive real 
part indicates an unstable mode. 

The neutral stability curve can be traced by continuation of the solution from 
the long-wave approximation or from the generalized eigenvalue problem as the 
initial point of continuation. Our strategy is to treat the system of first-order 
differential equations as a dynamical system. The neutral stability curve can then 
be obtained through the use of a pseudoarclength continuation method by forcing 
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FIGURE 9. Reproduction of the unstable shear mode for Yiantsios & Higgins' Poiseuille flow (1988). 

the real part of the growth rate to be zero. The continuation is done with AUTO, 
software developed by Doedel & Kerneves (1986). To verify the numerical solution, 
we reproduce Renardy's (1985) two-layer Couette flow case as well as interfacial and 
shear (figure 9) modes for the two-layer Poiseuille flow problems reported by Yiantsios 
& Higgins (1988). 

5. Stability analysis: results and discussions 
In order to obtain the stability characteristics of the air entrainment problem, we 

have to analyse the stability modes of Poiseuille-Couette flow in an inclined channel. 
We first obtain the unstable modes of this flow in a horizontal channel. Then, we 
apply the results to the air/Iiquid system. 

5.1. Poiseuille-Couette flow with horizontal walls 
In the horizontal case where the inclination angle 0 = 90", Couette flow occurs in 
both layers when 

dP 
- - plgcos(0) = 0, 
dz 

The two possible situations for the above conditions to be realized are if 8 = 90" 
with zero pressure gradient or if both layers have equal density and the pressure 
gradient equals plgcos(0). In this section we consider the first case, i.e. a horizontal 
Poiseuille-Couette flow (0 = 90O). To investigate the stability characteristics of this 
system in terms of the transition from a Poiseuille to a Couette system, we define 
the left-wall velocity coefficient ( r )  as the homotopy parameter. Starting with pure 
Poiseuille flow, that is Y = 0, we gradually impose a Couette component by increasing 
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FIGURE 10. Effect of the Couette component on the stability of (a) the shear mode 
and ( b )  the interfacial mode. 

r. Meanwhile we decrease the pressure gradient (dpldz) according to the relation : 

dp (1  - r ) D P / D Z ,  r 3 0, 
dz == { (1  + r ) D P / D Z ,  r < 0, 

where DPIDZ denotes the corresponding pressure gradient of the pure Poiseuille 
system. When jrI becomes 1, the system becomes a purely Couette flow. A positive 
value of r means the left wall is moving in the direction of positive z-axis, while a 
negative value means it is moving in the opposite direction. 
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FIGURE 1 l(a, b). For caption see facing page. 

1 .o 

In defining the Poiseuille-Couette system this way, we keep the Reynolds number 
the same throughout the transition. The Reynolds number is defined as the sum of 
the Couette and Poiseuille components, that is 

(108) 

(109) 

Re = Re, + Re,,  

where each component is defined by 

Re, = IrI Re, Re, = (1 - 1.1) Re. 

Figure 10(a) is the resulting neutral stability curve for the shear mode at Reynolds 
number 230. Points 0 and P in the figure where the neutral stability curve intersects 
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efficiency of the Couette component. 

with the r = 0 axis correspond to the points 0 and P of the Yiantsios and Higgins’ 
case in figure9. The continuation of these points for Ir[ > 0 shows that the Couette 
component stabilizes the shear mode. After superposing enough Couette component 
into the system, the shear mode is totally stabilized. When the left wall is moving 
opposite to the positive z-axis, more Couette component is required to completely 
stabilize the shear mode. 

Similar to the shear mode, the interfacial mode (figure lob) at the same Reynolds 
number (230) is also stabilized also by addition of the Couette component. But there 
is a significant difference - the interfacial mode is never totally stabilized, even for a 
pure Couette flow. 

As the Reynolds number increases, the unstable shear mode region increases 
(figure l l a )  and more Couette component is required for complete stability. 

The effect of the density stratification on stability varies based on the direction 
of the moving wall (figure l lb) .  If the wall is moving in the same direction as the 
pressure gradient, the increasing density ratio destabilizes the shear mode. On the 
other hand, if the wall is moving opposite to the pressure gradient, then the increasing 
density ratio will stabilize the shear mode. The effect of capillary number on the 
shear mode of instability is insignificant as one expects (figure 1 lc) .  

5.2. Application to airlliquid f low 

Finally we apply the stability analysis to the air/liquid experiments. Figure 12(a) is 
the most dangerous mode for the middle region of the air pocket with the base-state 
velocity profile shown in figure 5(b). The real part of the growth rate is always negative 
indicating that the flow is always stable in this region. On the other hand, the most 
dangerous mode for the side region of the air pocket, with velocity profile shown in 
figure 5(c), has positive growth rate as shown in figure 12b. The flow at the side region 
is unstable to the interfacial mode, only. 

These results are consistent with the experimental observations. Moreover, the 
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FIGURE 12. The most dangerous mode for the air/liquid experiment; (a) the middle region, 

( b )  the side region. 

interfacial mode for the side region of the air pocket is unstable at wavenumbers 
of the order of which agrees with the scale of the wavelength recorded in the 
experiments. 

6. Conclusions 
Our flow visualization studies (Aidun et al. 1992) reveal a sequence of events 

leading to the formation and entrainment of air bubbles into the liquid phase. This 
mode results in the formation of visible air bubbles and is referred to as ‘excessive’ 
air entrainment. The air bubbles can remain adjacent to the solid surface, as shown 
in curtain coating experiments (Kistler 1984), or get entrained into the liquid stream, 
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as demonstrated in our experiments. The mechanism of air bubble formation and its 
entrainment into the liquid phase has been investigated in this study. 

The long-wave stability analysis is applied to inviscid/viscous and viscous/viscous 
layers. Both results indicate that the only unstable mode is an interfacial mode with 
growth rate starting at k = 0 proportional to k 2 .  This mode of instability is similar 
to one of the long-wave modes for flow down an inclined plane studied by Benjamin 
(1957) and Yih (1963). It is interesting to note that the long-wave approximation 
for this problem does not admit the Kelvin-Helmholtz modes reported by Lezzi & 
Prosperetti (1991) for their air entrainment system. Long-wave analysis shows that 
the flow at the side of the air pocket is unstable and the flow in the middle region of 
the air pocket is stable, which is consistent with the experimental results. 

The Chebyshev-Tau method is used to obtain the full spectrum of critical modes 
possible in the two-layer Poiseuille-Couette flow in inclined channels. The interfacial 
mode is the dominant mode of instability although the shear mode is always present 
if the Couette component is not too large. 

Full stability analysis of the air/liquid flow in the experiments show that flow in 
the mid region is always stable while the side regions are always unstable. This is 
consistent with experimental observations. The only critical mode we have found 
for the base state which corresponds to our experiments is the interfacial mode with 
wavenumber of about lop3. This wavelength compares well with the experimental 
approximations. 

We have also found a new mode of instability when there is an interfacial inflection 
point in the base velocity. The mode, which is analogous to the inviscid mode in 
boundary layer flows, has been fully explored and results will be published in the 
near future (Aidun & Severtson 1996). 
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